If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-38x+27=0
a = 7; b = -38; c = +27;
Δ = b2-4ac
Δ = -382-4·7·27
Δ = 688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{688}=\sqrt{16*43}=\sqrt{16}*\sqrt{43}=4\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-4\sqrt{43}}{2*7}=\frac{38-4\sqrt{43}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+4\sqrt{43}}{2*7}=\frac{38+4\sqrt{43}}{14} $
| 7-20e=-8 | | 14=5-6w | | 2y+4(2)=64 | | 17+4a=7 | | 2x–12=5 | | 11=14+6k | | -4+6h=16 | | 7-2p=10 | | 2t-4/5=40 | | 14n-3=5 | | 3+10y=5 | | 3(x-2)(x-5)-2(x+9)(x-1)=18 | | 2y+4×2=64 | | 12b-5=2 | | 2x²+.5=0 | | -2x²+0.5=0 | | (2x+1)^2+6=0 | | X3+x4=-4x | | (2x+1)(x-2)=(2x+1)(2x-3) | | (3x+5)×2=(2x-1)×4 | | 25x^2-23x-2=0 | | 9(4x-1)÷2x=15 | | 6a/7=12 | | 3a/5=9 | | 7a/2=21 | | 4a/7=12 | | x×(-10)=15 | | 5a/3=15 | | 2x^2+8x3=0 | | 3a/2=6 | | 2^-x=0,0625 | | 0,0625=2^−x |